Bile secretory function in the obese Zucker rat: evidence of cholestasis and altered canalicular transport function.
نویسندگان
چکیده
BACKGROUND Obese Zucker rats (ZR) have been used as an experimental model for non-alcoholic fatty liver disease and are particularly susceptible to various types of liver injury. Bile secretory function has not been assessed in ZR. AIM To study bile secretion and expression of the main hepatobiliary transporters in ZR. METHODS Bile flow and biliary secretion of lipids and glutathione were determined in eight and 14 week old obese ZR and their lean controls. Protein mass and mRNA of the Na(+)/taurocholate cotransporting polypeptide (Ntcp), the bile salt export pump (Bsep), and the multidrug resistant associated protein 2 (Mrp2) were assessed by western and northern blot, respectively. The effects of administration of a tumour necrosis factor alpha inactivator (etanercept) and an insulin sensitiser (rosiglitazone) were assessed in obese ZR while leptin was given to non-obese rats to study its effect on Mrp2 expression. RESULTS ZR exhibited increased body weight and hyperlipidaemia. Only 14 week old obese ZR has fatty liver. Decreased bile flow and biliary lipid and glutathione secretion as well as reduced hepatic transport of both taurocholate and bromosulphthalein were found in obese ZR. Hepatic Mrp2 protein mass was markedly reduced (-70%) in obese rats while Ntcp and Bsep protein levels were similar to lean rats. Downregulation of Mrp2 seems to involve both transcriptional and post-transcriptional mechanisms probably related to insulin and leptin resistance. CONCLUSIONS Obese ZR exhibit an impaired bile secretory function with significant functional and molecular alterations consistent with mild cholestasis. A defective hepatobiliary transport capacity may be a contributory factor in rendering the obese ZR more susceptible to liver injury.
منابع مشابه
Extrahepatic obstructive cholestasis reverses the bile salt secretory polarity of rat hepatocytes.
To elucidate the consequences of extrahepatic cholestasis on the structure and function of hepatocytes, we studied the effects of bile duct ligation on the turnover, surface distribution, and functional activity of the canalicular 100-kD bile salt transport protein (cBSTP). Basolateral (blLPM) and canalicular (cLPM) liver plasma membrane vesicles were purified to the same degree from normal and...
متن کاملMolecular alterations of canalicular transport systems in experimental models of cholestasis: possible functional correlations.
The discovery of unidirectional, ATP-dependent canalicular transport systems (also termed "export pumps") for bile salts, amphiphilic anionic conjugates, lipophilic cations, and phospholipids has opened new opportunities for understanding biliary physiology and the pathophysiology of cholestasis. In addition, ATP-independent canalicular transport systems for glutathione and bicarbonate contribu...
متن کاملAltered alkaline phosphatase activity in obese Zucker rats liver respect to lean Zucker and Wistar rats discussed in terms of all putative roles ascribed to the enzyme
Biliary complications often lead to acute and chronic liver injury after orthotopic liver transplantation (OLT). Bile composition and secretion depend on the integrated action of all the components of the biliary tree, starting from hepatocytes. Fatty livers are often discarded as grafts for OLT, since they are extremely vulnerable to conventional cold storage (CS). However, the insufficiency o...
متن کاملShort Communication PREVENTION OF MRP2 ACTIVITY IMPAIRMENT IN ETHINYLESTRADIOL-INDUCED CHOLESTASIS BY URSODEOXYCHOLATE IN THE RAT
Ethinylestradiol (EE) induces cholestasis by affecting bile saltdependent and -independent fractions of the bile flow. The decrease in bile salt-independent flow is thought to be due, in part, to a reduction in the expression of the canalicular transporter Mrp2. The impact of modulation of Mrp2 function by sodium ursodeoxycholate (UDC) in EE cholestasis is unknown. We evaluated the protective e...
متن کاملShort Communication PREVENTION OF MRP2 ACTIVITY IMPAIRMENT IN ETHINYLESTRADIOL-INDUCED CHOLESTASIS BY URSODEOXYCHOLATE IN THE RAT
Ethinylestradiol (EE) induces cholestasis by affecting bile saltdependent and -independent fractions of the bile flow. The decrease in bile salt-independent flow is thought to be due, in part, to a reduction in the expression of the canalicular transporter Mrp2. The impact of modulation of Mrp2 function by sodium ursodeoxycholate (UDC) in EE cholestasis is unknown. We evaluated the protective e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gut
دوره 53 12 شماره
صفحات -
تاریخ انتشار 2004